
AD-A257 180

CAPS ReReader Simulation Model
User's Manual

Version 1.0

Julio Ortega, Elizabeth U. Saul, Sashank Varma, & Susan R. Goldman

Learning Technology Center

Vanderbilt University

October, 1992

N
192

The development of the system described in this report was supported by the Office

of Naval Research Cognitive Science Program 1142CS Grant N00014-91-J-1769, and

in part by the National Science Foundation, Grant DBS 90-09320.

92-28716



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PulhC re00,tC nq *~rt en 1,r :ri. ' •ccecon f •?rOCrmar, n ,-d 5 -0 r a[. ? q TO 2 .se ,'our ' )er -9Socr e. thet e "c a,-? ?t rme,•' ntrs -or es: ,3 c ut _

1. AGENCY USE ONLY (Leave 0lanK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 10/29/92 ITechnical Manual 5/1/91 - 4/30/92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

CAPS ReReader Simulation Model User's Manual Version 1.0 Grant N00014-91-J-1769

6. AUTHOR(S)

Julio Ortega, Elizabeth U. Saul, Sashank Varma, &
Susan R. Goldman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Learning Technology CenterI REPORT NUMBER

Vanderbilt University
Box 45, Peabody
Nashville, TN 37203

I 9. SPNSGRING;,MCNITQhtG AGE:ICY NAME(S) ANrl ADDRC4 1-ZO;tk•N C . •P A•NITCNG
AGENCY REPORT NUMSER

Cognitive Science Program (1142CS) A

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTE5

123. DISTRIBUTION AVAILA2!L.TY STATEMENT 12b. DISTRJ3UTION CODE

Unrestricted

13. ABSTRACT (M',1axrmum 2C0 worCs)

CAPS ReReader is a computer program that simulates the process and products of reading
comprehension. The input to ReReader is a representation of a text plus the representation of
some minimal knowledge that a human would need for the comprehension of the text. A

simulation run of ReReader produces traces of the reading behavior of a hypothetical reader and

outputs a set of "long term memory" strengths for the text information. The results of the traces

can be analyzed and compared with reading behavior and recall data collected from human

subjects reading the same text. ReReader currently runs on a VAX workstation running under the
VMS operating system.

ReReader Version 1.0 uses two User interfaces: One permits the User to set the parameters

for a simulation run; the other is for specifying different data report forms. This User Manual has

four sections plus appendices of technical information: Section 1 describes ReReader's text

processing model. Section 2 explains how to run a ReReader simulation. Section 3 explains how to

obtain and interpret the output of a ReReader simulation with the help of the ReReader Report

interface. Advanced features of the ReReader simulator are described in section four.

14. SUBJECT TERMS 15. NUMBER OF PAGES
59

Computational modeling 56 9 PRICE CODE

Text Comprehension

17 ;FIIRITV L'AýS!rCAT!C, .. N , ;C,-,T;Gi1 I:. L L. . r CL. Z-Ar-C C I . ,. L11%11TATION CFZS3,-,Al..

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified U'nc Lassified
NSN 7540-0 - -5 3 03 d J'rcar'c e O-

I I • i l l II~m llll I IIIIII l llllllllll l ll'4.. 4l l



Table of Contents

User's Manual Overview 1

1. The ReReader model 2

2. The User Interface for ReReader 9

3. Getting and Interpreting ReReader Results 13

4. Advanced Features 18

Appendices:

A: Login and logout of the ReReader account 25

B: Naming, Creating, and Transfering Files 26

C: Simulation File Formats 29

D: MOTIF User Interface Components 34

References 37

Tables and Figures 38

[3.,

D.. ...........

- --------

IA-1 I



User Manual Overview

CAPS ReReader is a computer program that simulates the process and

products of reading comprehension. The input to ReReader is a representation of a

text plus the representation of some minimal knowledge that a human would need

for the comprehension of the text. Once the input is prepared and the simulation is

run on that input, ReReader produces traces of the reading behavior of a

hypothetical reader. As well, ReReader outputs a set of "long term memory"

strengths for the text information; these are systematically related to the way the

hypothetical reader read the text. The results of these traces can be analyzed and

compared with reading behavior and recall data collected from human subjects

reading the same text.

The present implementation of ReReader provides two interfaces that

facilitate the tasks mentioned above. One helps run the simulation and the other

helps analyze the results of the simulation. This manual describes how to use these

interfaces. ReReader currently runs on a VAX workstation running under the VMS

operating system (See Appendix B for details).

The first section of this document describes the ReReader model of text

processing. The second section explains how to prepare the input and how to run a

ReReader simulation using the simulation interface. The third section explains how

to obtain and interpret the output of a ReReader simulation with the help of the

ReReader report interface. The fourth section explains advanced features of the

ReReader simulator. Finally, a series of appendices provide further details on

procedures and features of the ReReader system and its computer environment.



1. The ReReader Model

The ReReader simulator is a computational implementation of the strategic

competition model of text comprehension of Goldman and Saul (1990). The

ReReader simulator was implemented in the Collaborative Activation-based

Production System (CAPS) architecture of Just and Carpenter (1992). CAPS provides

the basic mechanisms to model both working memory and strategy competition

aspects of text comprehension.

1.1 The CAPS Architecture

The CAPS architecture permits one to build "comprehenders" that have (i) different

knowledge but the same "working memory resource" capacities, or (ii) different

capacities but the same knowledge. By manipulating each of these independently, it

is possible to observe the independent and joint effects of each factor on

comprehension processes and on the products of those processes.

A key aspect of the CAPS architecture is that preconditions on actions can

exist at levels of activation rather than as merely present or absent. So a "reader

model" may behave differently depending on the other elements in working

memory, the activation limit for working memory, and the available activation. In

the CAPS architecture when the activation limit is reached, information already in

working memory has to share the activation with new elements that enter working

memory; the "older" elements lose activation to the newer ones. When elements

fall below a minimum level, they are no longer functional in working memory;

they cannot connect witn new information. They are, for all intents and purposes,

gone.

1.2 Characteristics of The ReReader Model

The i,,eReader System, outlined below, is a prototype model and is limited in
scope. The pre . implementation of ReReader focuses on establishing connections

2



among propositionalized sentences and on the repair strategies used when initial

proposition-linking procedures fail. The user can manipulate the characteristics of

the "reader" through a user-friendly interface. Elaborations of ReReader that

embellish the knowledge base and the way strategy competition operates are under

development.

1.2.1 Representation of the input text.

The system operates on a propositional text base. A sample is given in Table 1

using the first sentence of the passage shown in Table 2. Sentences are parsed into a

verbal predicate with optional and obligatory arguments (predicate 1) along with the

relevant concepts (existence nodes), and modification propositions. A fourth type of

proposition relates predicates, e.g., cause, contrast, etc. In ReReader the propositions

are connected using three linking strategies: argument overlap, propositional

embedding, and relational reference. There are several variables that can be

adjusted: (a) The weights, or initial activation values, assigned to the propositions;

(b) The linking strategies the system operates with; and (c) The weights assigned to

the links. The four types of propositions that ReReader uses - verbal predicates,

concept propositions, modification propositions, and relational predicates - are

assigned default weights of 2 (verbal predicate) and 1 (everything else). Table 1 also

shows the default weights for each type of proposition. Links between propositions

are weighted equally (a value of 1). The activation values for propositions and links

may be modified through the user interface.

1.2.2 System Structure

There are two kinds of "spaces" in the system: one corresponds to human

working memory and the other to long term memory. Incoming input "occupies"

working memory and processing uses working memory capacity. The system has in

long term memory a dictionary that contains information classifying the predicates

for the specific text, a set of equivalence elements (translators), and a set of

3



procedural elements such as the propositional linking strategies and reading

strategies.

The variables related to system knowledge are the following: the Activation

Cap, i.e, the capacity of working memory; the amount of prior knowledge in the

dictionary; procedural knowledge available to the system; and motivation level,

(how motivation atfects the behavior of the production system is described below).

When working memory capacity is exhausted (the Activation Cap is reached),

a proportionate degradation of the activation of all elements active in working

memory occurs. The Activation Cap for each run is set through the interface (we

have experimented with Caps in the 30 to 125 unit range thus far). Different Caps

wili affect the life of an input proposition in working memory because degradation

of working memory elements occurs when the Cap is reached. For example, when

reading the second sentence of a passage, the working memory resources might be

sufficient to handle creation of all requested elements at the targeted initiai

activations without stealing activation from elements preexisting in working

memory. On the fourth sentence, however, all available activation might be

allocated and further requests, perhaps to build within-sentence links, would result

in the degradation of all elements (i.e., their activations would be scaled back). Over

many processing cycles at the Cap, a working memory element would lose most of

its activation and fall below threshold, thus becoming invisible (unusable) in

further processing unless it is re-activated.

1.2.3. Reading Strategies

The system "knows" four reading strategies: Read forward, read backwards,

skim backwards to a problem, skim forward to sentence that initiated a reread. Skim

differs from "read" in that orthographic representations of words get low levels of

activation or reactivation; during read propositional linking is done and some

propositions may be reentered into active states in working memory. The four

strategies are based on the behavioral data of Goldman and Saul (1990).

4



The strategies specified in the Strategy Competition Model (Goldman & Saul,

1990) involved different numbers of sentences: Sometimes a reader read just one

sentence back, sometimes three or four sentences back to a specific sentence. In

ReReader, these different kinds of strategies are a result of evaluations of the current

strategy after the processing of each sentence. These evaluations depend on several

aspects of coherence and the motivation level of the system. The evaluation

function is described more completely below.

1.2.4. How ReReader Works.

As illustrated in Figure 3, the ReReader system operates in four conceptual

phases as follows:

Phase I. Reads the first sentence as a string of propositions and assigns

activation levels according to the (default) framework described in Table 1: 1 for

concepts, modification, and relational propositions and 2 for main predicates of the

sentence. If the working memory "cap" or limit is exceeded, elements in working

memory "lose" activation proportionally until the new elements can realize the

appropriate values to be recognized by the system.

Phase II. Creates within sentence links. For the sentence shown in Table 1, P1

would be connected to P4 and to P5.

Phase III, between sentence links are created according to argument overlap,

propositional embedding and relational reference rules.

Phase IV. This phase proceeds in two steps. First, ReReader computes

measures of text coherence and summarizes them with an evaluation function, as

explained in subsection 1.2.5. The second step is to evaluate the current reading

strategy, using the measures of text coherence as inputs, and returning the "next"

reading strategy. "Read forward" will be selected if there is a positive value returned

by the evaluation function. "Mark problem" will be selected if there is a zero value

returned by the evaluation function. "Read backwards" will be selected if there is a

negative value returned by the evaluation function. How the system proceeds given

5



each of these outcomes is described later on, in subsection 1.2.6

1.2.5 Evaluating Text Coherence

Text Coherence is computed using the following five pieces of information:

1. Number of links to the first sentence of the passage if the current sentence

is the first sentence of a paragraph. A higher value equals greater coherence.

2. Number of links to the first sentence of the paragraph if the current sent-

ence is not the first sentence of a paragraph. A higher value equals greater

coherence.

3. Number of links to previous sentence (superseded by 2 or 1). So if the

current sentence is second in the paragraph, procedure 2 will operate and 3 will not.

For the third sentence in a paragraph, procedure 3 will operate as will procedure 2

but they will be counting different links.

4. Number of propositional arguments referenced in the current sentence

that are still present in working memory.

5. Number of propositional arguments referenced in the current sentence

that are missing from working memory. This measure reflects problems integrating

the current input with elements already in working memory; in other words,

failure to find overlap.

These five measures of text coherence are combined using an evaluation

function. The formula for the Evaluation Function reflects competition between

reasons for believing adequate coherence exists and reasons for believing it does not,

with motivation weighting the latter. More precisely, it is the sum of measure 1

(above) plus measure 2 plus (measure 3 divided by 5) less (measure 5 + motivation).

EF = Msr. 1 + Msr. 2 + (Msr. 3/5) - (Msr. 5 + Motivation)

The reason measure 3 is divided by 5 is so that local links will not totally dominate

reading. The denominator of 5 allows the system to take into account more global

aspects of coherence as well as coherence with the just prior sentence.

Motivation has a direct effect on the likelihood of rereading. With high

6



motivation going back will be more likely than if motivation is low. In fact, with

this evaluation function, two readers with the same number of missing arguments

would behave differently depending on their motivation levels. (Note that measure

4, the number of propositional arguments active in working memory, does not

figure in the evaluation function. We spent two weeks searching for a suitable

function, one which seemed plausible and produced reasonable behavior. Although

the present evaluation function does not include measure 4, replacing measure 5 in

the evaluation function given above the proportion of missing arguments, given by

Msr. 5 - (Msr. 4 +Msr. 5) yields performance quite similar to that obtained with the

simpler evaluation function.)

1.2.6 Competition among Reading Strategies

As Figure 2 illustrates, strategy selection depends on the evaluation function

in the following manner. If the evaluation function returns a positive or zero value

strategy selection is relatively trivial. A positive value means that there is sufficient

connection between the current sentence and propositions still active in working

memory. In other words, coherence is okay so reading continues forward. A zero

value indicates that the sentence is partially connected but that there are a number

of potential connections that were not made. The sentence will be marked as a

problem. If sentences are marked, the marker becomes important if the system

decides to read backwards. In the future, we intend to use these kinds of markers for

decisions at the end of text about general level of understanding and

comprehension.

A negative value results in the system reading backwards. This is essentially a

judgment that the current sentence lacks coherence with the propositions active in

working memory. If the system decides to read backwards, there are two possibilities:

it can skim back to a marked-problem sentence or it can read backward sequentially

from the current sentence.

7



a. The Marked-problem case: This case occurs when there is a

proposition active in working memory that has been marked as a problem. (These

will tend to be within 3 or 4 sentences back for most normal activation caps.) The

system skims back to that sentence, reads it and then evaluates. If the evaluation

function returns a positive value or a zero value the problem was resolved

sufficiently. ReReader skims forward to the sentence that initiated the rereading and

continues reading forward (i.e., reads in the next sentence). However, if the

evaluation function returns a negative value, che problem remains; the system then

proceeds backwards from the marked problem sentence. It stops going backwards

when the evaluate function returns read forward. (Note that in this case, ReReader

skips over sentences between the markee problem, sentence and the sentence that

initiated the rereading. This is reasonable because in most cases if those "skipped

over" sentences had had a lot of coherence with the sentence that initiated the

rereading there would not have been a coherence problem to begin with, i.e., the
"skipped over" propositions were available for integration the first time around.)

If there are multiple, marked sentences active in working irnemory, ReReader

goes through them sequentially in the following way: If there are multiple marked

problems in memory, go to nearest one and read it. Evaluate. If there is still lack of

coherence and there are more marked problems go to the neyt one. Evaluate. If

coherence is still lacking and there are no more marked problems, read backwards.

b. Read backward sequentially. This case occurs when there are no o;

no more "marked-problem" sentences in working memory. After each sentence is

read, there is an evaluation. When Evaluate does not return read backwards, skim

forward again to sentence that initiated the backtrack and read the next sentence.

In cases of read backwards, if the first sentence ot the passage is reached

and the evaluation function is still returning read backwards, ReReader skims back

to the sentence that initiated the rereading, marks it as a problem, and resumes

reading forward. One additional special case may occur: During rereading it is

possible for the ReReader to "lose it's starting place" (initiating sentence). If it does, it

8



begins reading forward from the curccnt sentence.

In summary, the evaluation f',nction and rereading work in the following

way: ReReader reads forward and at the end of each sentence evaluates how well it

integrates with information active in working memory. If there are small problems,

ReReader marks the sentence and continues reading forward. If there are larger

problems, ReReader proceeds backwards. If any sentences are marked, ReReader

skims back and reads each one starting at the closest one. If none are marked,

ReReader reads backwaids sequentially. When the evaluation function no longer

returns read backwards, the problem has been solved; and ReReader skims forward

to where the pr-oblem occurred and resumes reading forward.

2. The User Interface for ReReader

Yfhe ReReader simulator attempts to model a wide range of human behavior

by -ýermitting the researcher to control a fairly large set of parameters. The most

relevant of these parameters and options can be set quite easily through the

ReReader initialization interface. The window for that interface is shown in Figure

3. The basic operations needed to run the simalator using this interface are

explained in this section. More advanced features of the simulator and the interface

are described in section 4.

The User Interface is based on the MOTIF package. The elements of the

MOTIF package used in our application (buttons, windows, scales, etc.) are doscribed

in Appendix D.

The User Iriterface for ReReader guides the user through the operation of

ReReader. Running ReReader involves specifying a text file and "dictionary" for

the text, starting the user interface, setting parameter values, selecting desired

output files, and getting the FeReader simulation running. Each of these is briefly

described here.

9



2.1 Specifying the text file and "dictionary"

The text and "dictionary" files can be produced by any number of word processing

applications. If the files are created in a computer other than the VAX workstation

where the ReReader simulator program resides, they will have to be transfe,'red to

the VAX workstation. Appendix B explains how io name files and how to transfer

them from/to Mac Computers.

The text file. A specific format is required. The format is basically similar to

that used frequently in propositional analysis (e.g., Kintsch, 1988; Turner & Green,

1978). The format is illustrated here for the first sentence of the distance passage that

was parsed in Table 1. The illustration assumes that the text contains only the one

sentence.

(convert-text '(

(sentence 1)

(start paragraph 1)

distance is simply the space between 2 points

(1 is (pp4,pp5)

(2 isbetween (pp5 pp6))

(3 quant (pp6 2))

(4 distance)

(5 space)

(6 points)

The first element in the parentheses is the proposition number. This is followed by

the verbal predicate for the proposition. We combine certain surface elements into

one by linking them, as in isAbetween. Sentence elements appearing by themselves,

as in line 8, indicate concepts. The sentence number and sentence (see lines 2 and 4

10



in the example) are included in the file. Line 3 indicates that this sentence starts a

paragraph. Inclusion of this information makes it possible to subsequently

implement different activation depending on the position of a sentence in a

paragraph. Appendix C.1 describes the format of the text file (which we call the

passage file) in more detail.

The "dictionary". This is essentially ReReader's knowledge base. In the

present implementation, it contains information about the assignment of each

proposition to one of four types (predicate, relational, concept/existence, or

modification). Future versions will also incorporate propositions representing

lexical and schematic knowledge relevant to the passage. Appendix C.2 describes the

format of the "dictionary" file (which we call the predicate file) in more detail.

2.2 Starting the User Interface (This section is specific to our implementation of

Rereader.)

To get the User Interface running, you will first need to login to the ReReader

computer account. If you don't know how to do this, please refer to Appendix A.

Once you login to the ReReader account and obtain the "$" prompt from the VAX

Workstation, type "simulate." The ReReader initialization interface wil start

running, the window shown in Figure 3 will appear on the screen.

2.3 Setting Parameter Values

CAPS ReReader depends on a number of parameter values. The parameters

that may be altered by the user are shown in Figure 3, which is a copy of the CAPS

ReReader Initialization screen. The Activation Cap and motivation parameters are

the two most important parameters in ReReader and need to be carefully selected

for each simulation. The activation cap corresponds to short-term memory capacity

in a human, while motivation corresponds to a simple measure of motivation in

humans. Different settings of the activation cap will result in very different

memory traces and reading behaviors.

11



2.4 Selecting Input and Output Files

The names of the files used as input and output for a simulation run need to

be specified. Please refer to Appendix B to find out about what are valid file names

in the VAX workstation. The Initialization screen will request the names of the text

and the "dictionary" file for input. These files should already reside on the VAX

workstation. The Initialization screen also requests information regarding the

names of files in which trace information for the simulation run will be stored.

ReReader produces two output files at the end of a simulation: the memory file, and

the sentence trace file. These files are used to construct a variety of reports, as

indicated in Figure 4, ReReader Report Selection menu.

2.5 Getting the ReReader simulation running

Once all the parameters are correctly set, click on the button labeled "Go On

and Simulate". This will begin the ReReader simulation, which should take

anywhere from 10 to 30 minutes for a 150-proposition text. Once the simulation

finishes, you can proceed to run the reports in order to summarize the results of the

simulation (See next section). You should wait until the simulation finishes before

you issue another "simulate" command or a "report" command.

2.6 Help and Quit.

Help information can be obtained by clicking on the help buttons of the main

interface windows (Figures 3 and 4), option windows (Figures 7, 8, and 9), and for

the secondary windows which appear after you click on the help buttons.

If you press the Quit Button (see bottom of Fig. 1), the ReReader simulation will abort.

12



3. Getting and Interpreting ReReader Results

3.1 Overview

Reports of results can be run by using the window shown in Figure 4. To make

this window appear, you need to first login to *.he ReReader account (See Appendix A).

Once you get the "$" prompt from the VAX Workstatior', type the command "report"

and the menu shown in Figure 4 will appear. A,; can be seen on this menu, a variety of

analyses can be requested, including a listing for each cycle as well as various

summaries. As well, an automatic edit feature based on activation strength (threshold)

is included. Only propositions that exceed the threshold are included in the report

information. Also as indicated in Figure 4, the data are prepared in a format importable

by spreadsheet programs. We have used Excel and have not tested other commercially

available spreadsheet packages.

ReReader simulation results are generated by packaged "reports" that provide

summaries of the simulated long term and working memory contents and reading

behaviors. The ReReader Report interface facilitates report generation. Several

parameters allow customization of the reports. The report interface window is shown

in Figure 4 and is further explained in the following subsections.

There are three types of Reports that can be obtained.

a) Data sets that can be imported into other software for further analysis.

(Examples are provided below in Reports 1, 2, 3, and o.)

b) Data that is to be read and manually interpreted by humans. (Examples are

provided below in Reports 4 and 5.)

c) Graphics. (An example is provided below in Report 7.)

To select a particular report, click on the relevant line shown in the Report Interface

menu (Figure 4). Only one report can be selected at the time. Make sure all the

necessary parameters for the desired report have been set to the correct values.

(Sections 3.2 through 3.9 describe the parameters required for the various reports.)

13



Clicking the "Go Ahead" button will execute the report. Once the report is executing,

another report may be selected. The Quit button should be clicked when leaving the

Report Interface window.

3.2 Input Parameters for Rereader reports

Before you run a report you need to make sure all the parameters needed to run

a particular report are set to the desired values. There are five parameters; different

subsets of these are required by specific reports (see Sections 3.3 through 3.8)

The meaning of each of the parameters shown in Figure 4 is:

Sentence Trace File: This is a file produced by running the CAPS ReReader

simulation with the "Save sentence data" option chosen. The file name specified here

is the same that you specified during the simulation. (This file is needed for Reports 6

and 7.)

Memory Trace File: This file is produced by running the CAPS ReReader

simulation with the "Save memory data" option chosen. The file name should be the

same one you specified for the simulation. (This file is needed for Reports 1 through 5.)

Report Output File: This is the file where the output of the report will be stored.

You can choose any file name you want. Please try to be consistent - refer to Appendix B

for more details about how to choose file names in the VAX. This output file is

required for all Reports except Report 7. The report output files can be printed or

transferred to PC or Macintosh computers for further analysis using application

programs such as Microsoft Word or Excel.

Threshold: This is the activation threshold. This means that any CAPS working

memory element whose activation is below this threshold will be considered inactive,

and thus ignored in the calculations of a report. This parameter is used by Reports 2

through 5.

Cycle: This is the last cycle that you want to consider in the reports. The default

value of zero will indicate that you want the report to use the very last cycle for which

you have data in your data file. This parameter is used in Reports 1 through 5.

14



3.3 Report 1: Propositional Activation over all cycles (Table 3)

Cycles are listed in the columns and propositions in the rows. This report shows

the activation in working memory of each proposition in each cycle. The number of

the sentences in which propositions are first encountered (the one in which the

proposition existence is established) are also listed in the leftmost column.

Output format: Excel formatted file.

Required parameters: Memory Trace File, Report Output file, and Cycle.

3.4 Report 2: Active Cycles and Re-instantiations (Table 4)

For all propositions encountered till the last specified cycle, this report provides

the five columns of information.

1) The sentence number of the proposition listed in column 2.

2) The proposition number.

3) The number of times (i.e. cycles) in which the proposition remained active (i.e. over

the specified threshold) in working memory.

4) The number of times the proposition was re-instantiated. We count as re-

instantiations the number of times that the proposition reached the activation

threshold after it had already become inactive, i.e. its activation had decayed enough to

fall below the activation threshold. This is equivalent to the number of times a

proposition reaches activation threshold excluding the first occurrence.

5) The activation of the proposition in working memory on the last cycle.

Output format: Excel formatted file.

Required parameters: Memory Trace File, Report Output file, Threshold, and Cycle.

3.5 Report 3: Summary of Long Term Memory Strengths (Table 5)

For each proposition encountered in the simulation run, or part of the run if so

cycle specified by the user, this report provides four pieces of information:

1) The proposition number.

15



2) The long term memory strength of the proposition on the last specified cycle. The

long term memory strength is calculated by adding the working memory activation of

all active propositions (i.e., those over threshold) during all the preceding cycles.

3) The sum of the long term memory strengths of all the links that refer to the

proposition listed in column 1. The links are considered to be bi-directional so that

each link strength will be considered and added twice, once for each of the two

propositions that the link refers to. This is provided in more detail in report 4. Each of

the link strengths is calculated by adding the activation of links whose working

memory activation is above threshold, over all the cycles preceding the specified cycle.

4) The sum of columns 2 and 3, which is another measure of the strength of the

proposition.

Output format: Excel formatted file.

Required parameters: Memory Trace File, Report Output file, Threshold, and Cycle.

3.6 Report 4: Detailed Long Term Memory Strengths (Table 6)

This report details the information summarized in report 3. Instead of just

providing the sum of all link strengths to a proposition, the link strengths of each

individual link to a proposition are provided. The proposition and sentence number

are also included in the report.

Output format: Text file.

Required parameters: Memory Trace File, Report Output file, Threshold, and Cycle.

3.7 Report 5: Detailed short term memory activations (Table 7)

This report provides the working memory activation of each active proposition

and link in the specified cycle. Although the output format is similar to report 4, the

meaning is different, since no sum of the activations takes place.

Output format: Text file.

Required parameters: Memory Trace File, Report Output file, Threshold, and Cycle.

16



3.8 Report 6: Reading Behavior Summary (Table 8)

This report indicates information about the number of times each sentence was

read, skimmed, reread, initiated a reread, or ended a reread. Six columns of

information are provided for that purpose:

1) Sentence. This is the sentence number.

2) Read. Indicates how many times the sentence was read (i.e. loaded with full

activation and fully processed).

3) Skimmed. Indicates how many times the sentence was skimmed (i.e. loaded

with reduced activation and not fully processed)

4) Reread. A reread happens when the same sentence is read again immediately

after a previous read, with no reading or skimming of other sentence in the middle.

This columns indicates how many times this happened with the sentence listed in

column 1.

5) BackTo. This indicates how many times the sentence in column 1 was the end

of a backtracking episode.

6) BackFrom. This indicates how many times the sentence in column 1 initiated

a backtracking episode.

A graphic representation of this report is shown in Figure 5. Processing cycles are

listed on the x axis while the sentence numbers are listed on the y axis. Sentences

which are read in a particular cycle are shown by wide solid lines. Sentences which are

skimmed during particular cycles are shown as narrow dashed lines.

Output format: Excel formatted file (Table 8) or Graphic Display (Figure 5)

Required parameters: Sentence Trace File, Report Output file.

17



4. Advanced Features

The foregoing sections of this manual provide the "basic operating procedures"

for the ReReader simulation model. There are additional features that increase the

flexibility of ReReader. We describe these features in this section.

4.1 Fixed Path Option

Under normal operation, the user specifies the Activation Cap and Motivation

parameters and the "path" that the simulation takes is determined by the operation of

the simulation. It is also possible to pre-specify a path that the simulation will use.

The ReReader Initialization Screen (Figure 3) contains two buttons: "Use

Reading Strategies" and " Follow fixed path specified in Path file." These buttons allow

the user to set the ReReader simulation mode. If you select the first mode (use reading

strategies) ReReader will run normally, i.e., it will automatically choose what sentence

to process next based on the results of the prior sentence and the parameters used to

select reading strategies (see sections 5.4 - 5.7). If the user chooses the second mode

(follow fixed path), ReReader will choose the next sentence to process according to the

order specified by the Path File (see Appendix C.5).

In the path following mode, ReReader loads sentences into short memory and

processes them in a predefined sequence. The processing of each individual sentence is

identical to the normal mode (i.e. within-sentence links, between-sentence-links,

activation boost, etc. are handled are in the same manner), except for the fact that the

measures of text coherence have no effect on the order in which sentences are

processed. This mode is provided in order to help correlate the results of the

simulation with human data. The path followed by human subjects can be retraced by

ReReader. Simulation results can then compared with actual behavioral data (for

example, the simulated long term memory trace can be compared with actual recall

data).

18



4.2 Saving Memory and Sentence Trace Files

Both the memory and the sentence trace files are normally saved when a

simulation is run. Since ttds files are very long, they may end up filling up the disk.

(Files that are not needed should be deleted.) It is possible to prevent the creation of

either the memory or the sentence trace file if one or the other is of no interest to the

user and space is a problem. The initialization screen (Figure 3) contains buttons that

permit the user to specify save or do not save for the sentence data or the memory data.

The memory trace file should be saved if you plan to run any of the other reports that

summarize short or long-term memory data. The sentence trace file is needed to run

the reading behavior reports (reports 6 and 7).

4.3 Parameters that can be changed with the User Interface

In addition to the Activation Cap and Motivation parameters there are several

other parameters that can be manipulated. Some can be set through the ReReader User

interface. Other parameters can only be set by modifying the ReReader source code,

something which requires LISP programming expertise. The interface permits the user

to set the initial activation given to the different sentence constituents, strategy link

options, and coherence criteria options. The default values for constituent activations

were described in section 1.2.1. Strategy link options allow the user to choose the set of

linking rules that operate on a given run. The default is for all three to operate

(argument overlap, propositional embedding and relational reference). At the same

time, the default link activation value of 1 can be altered. The default for coherence

criteria is for all five measures described above to be computed and used in the

evaluation function. However, the user can deselect one or more of these indices of

coherence.

4.3.1 Constituent Activations

When a sentence is loaded by ReReader, each of the elements of a sentence (i.e. the

sentence constituents) get an initial activation. In our representation, a sentence is

19



described by one of several lines of words plus a set of propositions (See Section 2.1 or

Appendix C.1). The initial activation of the words and propositions loaded each time

ReReader processes a sentence can be set to different values if the given defaults are not

adequate. Clicking on the button labeled "click here to change constituent activations"

of Figure 3, will cause the window shown in Figure 6 to appear. The initial activation

of concepts is set with the scale labeled "Word." The initial activation of propositions is

set according to the proposition type (Exist, Modification, Relational Reference, and

Verbal Predicate). For each of those types, the initial activation of the proposition can

be set using the correspondingly labeled scale.

After setting the initial activation of the sentence constituents, clicking on the

button labeled "Ready. Go Back" returns to the main interface window and activates

the settings selected. "Ready, Go Back" must be pressed for the selected values to

replace "old" values.

4.3.2 Link Strategy Options.

Links are created between propositions according to three rules: Argument

Overlap, Propositional Embedding, and Relational Reference. Which of the rules is

active can be specified. As well, the initial activation of the links created by each of these

rules can be specified.

Clicking on the button on the ReReader Initialization Screen (Figure 3) labeled

"Click here to change Link Strategy Options" causes the window shown in Figure 7 to

appear. The menu allows the user to select which rules will be used to create links

between propositions and what initial activations they will have. The user can also

specify what additional activations will be added to propositions when the links are

created (Propositional Boost).

After setting the Link Strategy Options, click on the button labeled "Ready. Go

Back" to go back to the main interface window. The Link Strategy Options window will

disappear. Until that is done, the selected settings will have no effect. Returning to the

main menu before clicking on the "Ready, Go Back" button, will not update the values.

20



4.3.3 Coherence Criteria Options

Coherence criteria are the different parameters which are calculated by ReReader

at the end of processing a sentence. These parameters are used in an evaluation

function. The result of the evaluation function will determine which reading strategy

should be used during subsequent processing in the normal ReReader mode.

Click on the button labeled "Click here to change Coherence Criteria Options" of

Figure 3 and the window shown in Figure 8 will appear. Here you can select which of

the possible coherence criteria should be in effect during the simulation (First Sentence

of Passage, First sentence of paragraph, Previous sentence, Argument links present,

Argument links missing). The default leaves all criteria on.

When you have the desired Coherence Criteria in effect, click on the button

labeled "Ready. Go Back" to go back to the main interface window. Until you do that,

the settings you selected will have no effect.

4.4 Parameters Modifiable through Changes to the Source Code

Several system variables are not accessible from the User Interface and can be

modified only by directly changing the source code. This code is entirely contained in

the text files INITIALIZE.L (Psylisp code) and ReReader.L (CAPS productions and

commands). All parameters described in this section can be found in the latter file.

1. Activation-Capping Scheme: CAPS ReReader supports three activation-

capping schemes. Each was developed after flaws in a predecessor were discovered.

ReReader, like most CAPS production systems, runs under the third one. This is

specified early in the source file with the command (turn pre-spew-adjustment 3.0).

2. Activation Threshold: Working memory elements in CAPS have activations.

For an element to match a production, it must match symbolically and have an

activation greater than the specified threshold. When not explicitly stated in a

production, this threshold defaults to 0.1. This can be changed by modifying the line

(turn default-production-threshold 0.1), which occurs early in the ,;ource file.

21



3. Tracing: ReReader's pai.. through a passage is reported af the sentence level.

That is, every time a sentence is processed, several bits of information are displayed

including the sentence being scanned, whether it's being read or skimmed, whether it

was reached by mo-, ing forwards or backwards, the values oi the measures of text

coherence and the evaluation function, whlt course of action ReReader decided to take

next based on the value of the evaluation function, the markers of problematic

sentences that a.- still active (above the Activation Threshold described abuve), and the

total number of CAPS cycles used to process the sentence and passage to that point.

There are a number of internal cycles are actually required to process a single sentence.

The processing over these cycles in the form of production firing and activation

constraints can be viewed in detail by changing selected parameters from off to on in

the following command (found early in the source file): (turn trace-productions off

trace-cycles off trace-all-spews off trace-cap off).

4. Starting Information: ReReader currently begins processing by reading forward

from the first sentence of the passage. The initial task, reading or skimming, can be

changed by altering the RHS action (<add> (current-task read)) in the first production,

called initialize-system. The initial direction is set by th, RHS action (<add> (current-

direction forward)) in the same production. To begin processing at a sentence other

than the first one, modify the RHS action (<add> (current-phase (start (<tok> senteice

1)))) in the next production, called read-freely. This modification has no effect when a

fixed path is supplied because the first sentence on the path is the first sentence that will

be read.

5. Phase Sequencing: CAPS is fully parallel, capable of firing all matched

productions on each cycle. This allows several lines of processing to occur at the same

time. ReReader currently processes sentences by cycling through several phases. The

sequence in which these phases occur (or co-occur) is specified by working memory

elements of the form (:ltm task direction phase-i :becomes phase-j) where the italics

indicate variables. These elements are created in the production read-freely and read-

path depending on whether ReReader is evaluating the coherence of tC-e text after each

22



sentence and deciding what to do next based on the evaluation or reading a

predetcr-nined path through the passage. For instance, freely relding a sentence while

moving forward requires cycling through six phases, one at a time, as indicated by the

following working memory elements:

(:Itm read forward start :becomes scan-sentence)

(:Itm read forward scan -sentence :be-ontes link-with-sentence)

(:ltm read forward link-within-sentence :becomes link-between-sentences)

(:itm read forward link-be; ,veen-sentences :becomes fire-demons)

(:ltm read forward fire-demons :becomes evaluate-current-reading-strategy)

(:ltm read forward evaluate-current-reading-strategy :becomes end).

To change the "read forward" behavior so that scan-sentence, link-within-sentence, and

link-between-sentences ocur simultaneously, change the second and third elements

above to:

(:ltm read forward start :becomes link-within-sentence)

(:ltm read forward start :becomes link-between-sentences).

To flip the order in which within-sentence and between-sentence links are created, alter

the second, third, and fourth elements above to:

(:ltm read forward scan-sentence :becomes link-between-sentences)

(:ltm read forward link-between-sentences :becomes link-within-sentence)

(:ltm read forward link-within-sentence :becomes fire-demons)

There are two additional parameters, described below, that are not currently modifiable

from the User Interface; however, we plan to provide access to them from the User

Interface in a future version.

6. Number of Wor'ls to Scan: ReReader scans a sentence in one pass if it is

skimming and two passes if it is reading. The first pass (which both modes share)

activates an orthographic representation of each word (called a percept). The additional

pass associated with reading is used to activate the propositions representing the

semantic content of the sentence. Initially, it took one CAPS cycle to activate a percept

and one to activate a proposition. Bec:iuse propositions presumably require deeper

23



processing, and thus more time to activate, ReReader was changed to activate multiple

percepts on each cycle. The RHS action (<number-of-words-to-scan> 3) in the

production initialize-system sets this number. The default setting insures that percepts

are activated three times as quickly as propositions.

7. Evaluation Function Threshold: The evaluation function returns a number

based on the measures of text coherence. ReReader compares this number with the

Evaluation Function Threshold and returns an evaluation (read on, mark probiem,

proceed backwards) depending on whether it is less than, equal to, or greater than the

threshold. To set this threshold, alter the (<init-new-reading-strategy-threshold> 2)

RHS action in the production read-freely.

The default values for these variables were determined based on procedures for tuning

the operation of ReReader, following standard simulation techniques.

24



Appendix A: Login and Logout of the Rereader Account

Computer Environment

ReReader runs on a VAX workstation running the VMS operating system. The

CAPS91 implementation of the CAPS software (developed at CMU) needs to be

installed for ReReader to work. In order to run the ReReader interfaces, the X windows

software needs to be running on the VAX workstation as well. It is also possible to run

the interfaces on a Macintosh connected to the same network as the VAX workstation,

provided the appropriate X terminal emulator software is running on the Mac. We

have tested ReReader (using the Mac as display) with the MacX software.

A.1 Login to the ReReader Account in the VAX Workstation

Make sure that the previous user has logged out of the VAX station. You will

then see a small login window where you can enter a username and a password. Type

ReReader as the username and CAPS as the password. Sometimes there are some

system messages overlapping the input window. If this happens, press the <Control>

and <F2> keys simultaneously and you will get the login window.

To logout, find the "Session Manager" window and select the "Quit" item of the

"Session" Menu. Some times the "Session Manager" window is not visible since it

may have been covered by other windows or it may have been iconified (i.e.

compressed into a little window labeled "ReReader"). To bring up a window that is

covered, place the mouse on a portion of the screen not occupied by any window and

click. You will get a menu with the options "Shuffle up" and "Shuffle Down". Select

either one repeatedly until the desired window is placed on top of the others. If the

window you want to use is iconified, just click on the corresponding icon and the

window will open up.

25



Appendix B: Naming, Creating, and Transfering Files

B.1 File Names

Because ReReader runs on the VAX workstation, file names must conform to

VAX file name conventions. A file name in the VAX system has two components: a

file name proper, and a file extension. When new files are created, VAX will not

automatically assign them the extension. Without the extension, the file can still be

read by VAX but a lot of confusion may arise, mostly due to the fact that the user needs

to maintain (and remember) a large number of files. The extensions help the user in

keeping the files organized.

The file name proper may be of any length and may contain alphanumeric

mixes. All letters are automatically converted into capitals by VAX. Two file names

which differ only in the character case will be understood to have the same file name by

the VAX, and the newer one will delete the older one. Therefore, care should be

exercised in naming files.

The file extension is three characters long and normally indicates the type of file.

The User should use the file extension consistently to differentiate the different types of

files created by ReReader. For example, choose a standard file extension for all the

report files created with Excel format. (We recommend the extension "XCL".

Additional recommended extensions for each of the files used by ReReader are

contained in Appendix C.) The file name proppr and the file extension are separated by

a period. A complete typical file name is: REPORT1-RESULT.XCL.

B.2 Creation of Files.

Files used by ReReader can be created with any editor or word processor that can

store the file in plain text format. On a VAX, use the EDT editor, accessed by the "EDIT"

command. (For more information, refer to the VAX manuals.) On a Macintosh, use a

word processing package such as Word Perfect or Microsoft Word, and save the file in

26



"text" format. Then transfer the text file to the VAX. For example, a Word Perfect file

should be saved using the Format option, "Text Export." To copy such a file from the

Mac to the Vax, use software programs like telnet ftp or pacerlink. Make sure you copy

the file to the ReReader account main directory. Once the file is copied, it can be

accessed by the ReReader simulation. Remember to give the file a new name with the

appropriate extension when you copy it.

B.3 Transfer of files from Macintosh to VAX using ftp

1) Run the telnet program on the Mac (by double- clicking on the file

named "NCSA telnet" or "Telnet ... MacTCr ').

2) Select the item "Enable F.TP" from the "file" menu.

3) Select the item "Open Connection" from the "file" menu. A dialog window

will appear asking for a session name.

4) Type "capsvs.gpct.vanderbilt.edu" followed by a return. You will then get

"Username: " prompt from the VAX.

5) Type ReReader as the username followed by a return. You will then get the

"Password: " prompt from the VAX. Type "CAPS" followed by a return. You will then

login to the VAX, and get the "$" prompt.

6) Type the word "ftp" followed by a space (NO return).

7) Select the item "Send IP Number" from the "Network" menu.

8) Hit the return key TWICE.

9) Type "Get filename" followed by a return, where filename is the name of a

file that resides in the currently selected Macintosh directory. mhis file will be

transferred to the Vax.

10) Repeat step 8 for every file that needs to be transferred from the VAX to the

Macintosh.

11) Type "bye" followed by a return to quit ftp.

12) Choose the item "Close Connection" from the "file" menu to leave the VAX

system.

27



13) Choose the item "Quit" from the "file" menu to quit everything.

B.3 Transfer of files from VAX to Macintosh using ftp

First, follow the instructions 1) through 8) above.

9) Type "Put filename" followed by a return, where filename is the name of a

VAX file, which will be transferred to the currently selected Macintosh directory.

10) Repeat step 8 for every file that needs to be transferred from the VAX to the

Macintosh.

When you are done, follow instructions 11) through 13) above.

28



Appendix C: Simulation File Formats

C.0 File Names (passage, predicate, sentence trace, memory trace, path)

As in most otner computer applications there are many files that need to be

maintained in order to provide data to ReReader and save the results of the ReReader

simulation. It is the responsibility of the user to create input files and choose adequate

names for them. For example, the text and propositions of any particular passage have

to be written and stored in a file using a format that ReReader can use. The name

chosen for that file has to be entered through the ReReader interface so that the

ReReader simulator is able to retrieve the correct passage in order to proceed with its

simulation.

Defaults file names for the different files used in ReReader (both required and

optional) are automatically provided when the ReReader interface is started (See Figure

5). The default names will rarely be the ones you need. To specify or modify a file

name, move the mouse pointer to the square where the file name you want to change

is located and click. Then modify the file name using delete and other keyboard keys.

The passage and the predicate files always need to be specificad, since they contain

the information specific to the particular passage to be simulated. Make sure the files

exist and have been correctly edited. If you plan to save the sentence data or memory

data, make sure that appropriate file name are provided. If you choose to simulate

according to a fixed path, make sure the appropriate file exists and is correctly specified.

C.1 Passage File (Recommended extension: PSG)

The file should first contain the statement

(convert-text '(

followed by a series of sentence descriptions. Once all sentences of the passage have

been described, indicate the end of the passage with two parentheses:

29



as shown at the end of Table C.1.

Sentence Descriptions

The description of each sentence consists first of the statement,

(sentence sentence-number)

where the sentence-number should start with 1 and be incremented for each new

sentence.

If a sentence begins or ends a paragraph and the User's theoretical assumptions

about text processing suggest that such a position would affect its salience to the reader,

then ReReader must be told to add extra processing "weight" to that sentence.

* To "weight" a sentence that starts a paragraph, add the statement

(start paragraph paragraph-number)

* To "weight" a sentence that ends a paragraph, add the statement

(end paragraph paragraph-number)

where paragraph-number should start with 1 and be incremented for each

new paragraph of the passage.

The next line or lines should be raw text, such as:

Distance is simply the space betwe:n two points.

Following each sentence is its propositional parse. Each proposition has a

unique number. For example, (5 distance) indicates that proposition number 5 is the

concept "distance." In addition to specifying concepts like "distance," propositions can

define verbal relations among concepts. In this case, the concepts that are related are

referred to in parentheses by their numbers rather than their names. For example,

(2 isAbetween (pp5 pp6)) indicates that proposition number 2 is the relation "is

between," which references proposition 5 (distance) and proposition 6 (points). In

English, this reads "distance is between points."

Once all the propositions that come from a given sentence have been listed, one

or more blank lines should be added before starting information pertaining to the next

sentence.

30



C.2 Predicate File (Recommended extension: PRD)

The file format for the predicate file is shown in Table C.2. The predicate file

contains information that a reader is assumed to possess before s/he starts reading a

passage. That information will determine the initial activation given to different

proposition types and ,dso the manner in which different propositions are processed.

In its current versioni, the only information ReReader can take into account is what

category a given proposition falls into. We assigned propositions to four categories:

exist (a concept), verbal, modification, and relational. Each proposition used in the

passage must be assigned to one of these four types and this must be specified in the

predicate file.

To specify a proposition category, simply type (on a new line for each

proposition) the following information:

(category proposition-name)

where category is one of the categories listed above, and proposition-name is simply

the proposition itself, as it appeared in the passage file. For example,

(exist distance) indicates that the proposition "distance" is in the "exist" category.

At the beginning of each predicate file there should be the statement:

(in corpora te-p redica tes '(

Once the passage propositions have been described, there should be two parentheses to

indicate the end of the predicate file, i.e., )), placed as shown in Table C.2.

C.3 Memory File (Recommended extension: MEM)

The memory output file contains the simulated state of working memory after

each sentence processing cycle. The beginning of such an output file is shown in

Table C.3.

The purpose of this file is to store the results of a simulation run so that different

types of reports can be produced from that simulation run. The output is not intended

to be useful for direct inspection because the amount of data will be very large and

disorganized.

31



For each cycle, the contents of short term memory are written out with a new

group of information lines enclosed by parentheses. The useful information comes

from two types of lines, as described below.

1) ((sentencel propositionl isAbetween) . 2.4)

This line shows that, during the current cycle, there is a proposition numbered 1,

whose name is isAbetween, and which was first encountered in sentence number 1.

The activation of this proposition at the end of the current cycle was 2.4.

2) ((proposition1 :links-to proposition5) . 1.0)

This line shows that at the end of the current cycle there is a link between proposition 1

and proposition 5 with an activation value of 1.0.

C.4. Sentence trace file (Recommended extension: SEN)

The sentence trace file provides a variety of information about the results of

sentence simulations. Although some of the reports use this file as input, the

information in this file is mainly intended as a raw data source. A portion of a sentence

file is shown in Table C.4. The information provided includes the number of cycles to

process the specific sentence and the cumulative number of cycles. Once sentence 2 os

read, information is provided about the measures of text coherence and the outcome of

the evaluation function. This information is provided in the demons line and the first

5 numbers in parentheses correspond to the text coherence measures specified in

section 1.2.5. The sixth number is the motivation level. The strategy specifies the

outcome of the evaluation function.

C.5. Path file (Recommended extension: PTH)

ReReader can operate in one of two modes. In one of them, the path following

mode, ReReader simulates human data by reading the sentences of a passage in a pre-

specified order rather than having the order determined by the on-going results of tIle

simulation. The format of a pre-specified path is shown is the following:

151510

32



This file specifies that sentence 1 should be read first, followed by sentences 5, then 15,

and finally 10. The sentence numbers can be separated by spaces or can appear on new

lines.

33



(convert-text (

(sentence 1)
(start paragraph 1)
distance is simply the space between2 2 points
(1 is (pp4 pp5))
(2 isAbetween (pp5 pp6))
(3 quant (pp6 2))
(4 distance)
(5 space)
(6 points)

(sentence 2)
measured2 with a standardAunit such as the kilometer or mile
the result is called absolute'Ndistance and is2 what most
persons probably think of when they think of distance
(20 measure (someone1 pp 4 pp25))
(21 isa (pp25 pp26))
(22 isa (pp25 pp27))
(23 result (pp20 pp24))
(24 type'of (pp4 pp28))
(25 standardAunit)
(26 kilometer)
(27 mile)
(28 absoluteAdistance)
(29 think (pp32 pp3l))
(30 mod (pp32 most))
(31 isAequal (pp28 pp4))
(32 persons)

(sentence 3)
(end paragraph 1)
however there is also something called relative'Ndistance which
is when absoluteAdistance is influenced2 by other factors
(50 however (pp29 pp5l))
(51 typeAof (pp4 pp52))
(52 relativeAdistance)
(53 when (pp54 pp52))
(54 influence (pp56 pp28))
(55 mod (pp56 other))
(56 factors)

Table C.1: Passage File



(incorporate-predicates '(

(exist distance)
(exist space)
(exist points)
(exist standardAunit)
(exist kilometer)
(exist mile)
(exist absolute~distance)
(exist persons)
(exist relativeAdistance)
(exist factors)

(modification quant)
(modification mod)
(modification typeAof)

(relational however)
(relational influence)
(relational when)

(verbal is)
(verbal isa)
(verbal isAbetween)
(verbal measure)
(verbal result)
(verbal think)
(verbal isAequal)

Table C.2: Predicate File



((sneclpooiin Sbter).24
((sentencel proposition2 is)betwee3) 24
((sentencel propositioni isan) 1.2.)
((sentencel proposition3 spact) .1.2)

((sentencel proposition6 spaces) .1.2)

((sentence 1 proposition poistnts) . 1.2)
((sneclproposition41Anst droistance) .1.)

((proposition 1:links-to proposition4) .1.0)

((propositioni :links-to proposition5) .1.0)

((proposition2 :Iinks-to propositionS) .1 .0)
((proposition2 :links-to proposition6) .1 .0)
((proposition3 :links-to proposition6) .1 .0)
((propositioni :links-to proposition2) .1.0)

((sentence2 proposition29 think) .1.014046993867223)

((sentence2 proposition23 result) .0.8527096855242637)

((sentence2 proposition20 measure) . 1 .13633076166654)
((sentence2 proposition3l iSAequal) . 1.284952913829636)
((sentencel proposition2 iSAbetween) . 0.7230155303685141)
((sentence2 proposition2l isa) .0.8951659867222199)

((sentence2 proposition22 isa) .0.9230288953991904)

((sentence 1 proposition 1 is) . 0.9458789808527028)
((sentence2 proposition24 typeAof) . 0.7590274545116866)
((sentencel proposition3 quant) .0.3615077651842571)

((sentence2 proposition30 mod) .0.5491496964887308)

((sentence2 proposition25 standardAunit) . 0.548555234400117)
((sentencel proposition5 space) .0.3615077651842571)

((sentence 1 proposition6 points) .0.36150776518425711/

((sentence2 proposition32 persons) . 0.5765007626333879)
((sentence2 proposition27 mile) . 0.4654028548960273)
((sentence2 proposition26 kilometer) . 0.4572508051421736)
((sentence 1 proposition4 distance) . 0.58437 12156684457)
((sentence2 proposition28 absoluteAdistance) . 0.5233662630944462)
((proposition 1 :inks-to proposition4) .0.30 12564709868809)
((propositioni :links-to proposition5) .0.3012564709868809)

((proposition2 :links-to proposition5) .0.301 2564709868809)
((proposition2 :links-to proposition6) .0.3012564709868809)

((proposition3 :Iinks-to proposition6) .0.3012564709868809)

((proposition 1 :inks-to proposition2) .0.3012564709868809)

((proposition2 :Iinks-to proposition3) .0.3012564709868809)

((proposition20 :links-to proposition25) .0.7954758559370419)

((proposition2l 1 ln ks-to proposition25) .0.7954758559370419)

((proposition22 :links-to proposition25) .0.7954758559370419)

((propositioni :Iinks-to proposition20) .0.9481965236465676)

Table C.3: Partial Printout of a Memory File



read sentence1

cycle count on sentencel: 27
total cycles thus far: 27

read sentence2
demons: (6 0 0 15 0 1.0) : 7.0
strategy: read-on
continue reading forward normally

cycle count on sentence2: 48
total cycles thus far: 75

read sentence3
demons: (2 0 9 9 0 1.0) : 4.0
strategy: read-on
continue reading forward normally

cycle count on sentence3: 37
total cycles thus far: 112

read sentence4
demons: (2 0 0 4 0 1.0) : 3.0
strategy: read-on
continue reading forward normally

cycle count on sentence4: 29
total cycles thus far: 141

Table C.4: Begining of Sentence File



Appendix D: MOTIF Interface Components.

Window Components: Buttons, Text Windows, and Scales

The interface software used for ReReader is based on a software package called

MOTIF. This package uses some interface conventions (i.e, ways to manipulate the

mouse, windows, etc.) that are quite similar to, but not identical with, the familiar

Macintosh interface conventions.

(General note: In the following descriptions, to click means to push the (only)

mouse button on a Macintosh mouse, or to push the leftmost button on a VAX mouse.

The other buttons on the VAX mouse are not used in ReReader. To double click means

to click twice in rapid succession on that same button.)

D.1 Buttons

There are three different kinds of buttons, reflecting three types of choices.

1. Pushbutton: A pushbutton is a window surrounded by a border that has an

associated text label. When you click inside the borders of a pushbutton, then some

action (normally explained by the label) is taken. For example, when you click on the

pushbutton labeled "Quit" in the button of Figure 3, ReReader will quit, the interface

window will disappear, and the system will return to the VAX prompt (the "$" sign).

2. Toggle Button: A toggle button is used for options that can be turned on or off,

like a light switch. The button is on when the square next to the option label is dark

(looking like a button which has been pushed), and off when the square is the same

color as the rest of the window. To change the state of a toggle button (from on to off

and vice-versa), click on top of the button square or its label. Although toggle buttons

sometimes are grouped together for convenience's sake, they can each be toggled

independently.

3. Radio Button: A radio button is used to select an option out of a possible set of

options, like a radio station tuner button. The button is on when the diamond next to

the option label is dark, and off when the diamond is the same color as the rest of the

34



window. To change the state of a radio button (from on to off and vice-versa) just click

on top of the button diamond or its label. Radio buttons come in groups and only one

of the radio buttons of a group can be on at any particular time. If a different radio

button is turned on, all other radio buttons will automatically be turned off.

4. Text Window: A text window allows you to enter and/or modify text

parameters. The text parameters used in ReReader are the different file names that

specify which passage file to use, in which file to store the output of a report, etc. The

text window is actually a small editor. Although many fancy editing operations are

possible (they are explained in some of the voluminous X window system references),

you can rely upon simple editing operations that you already know for the purposes of

using ReReader. For example, the Delete key deletes backwards, clicking in the middle

of the text allows you to start inserting text in that position, and so forth.

No action is taken when the text in a text window is modified. The text in the

window will only be used after some action is indicated by clicking on a pushbutton.

For example, if you enter the name of a report output file in a text window, the name

is actually retrieved and used by the program once you push the button "Go Ahead and

Run Report"

5. Scale: A scale is used to set a numeric parameter. For example, you can set the

activation cap that ReReader works with anywhere along a range from 0 to an upper

limit of, say, 200. The values are set by moving a small rectangular pointer, called a

notch, with the mouse. The possible range is indicated by the scale itself.

Notches can be moved in two ways: dragging or incremental clicking. The User

can drag the notch to the desired location. (To drag means to move an object on the

screen by positioning the mouse pointer on an object, pressing down the button

without releasing it, moving the mouse pointer while holding down the mouse button

until the object is at its desired location, and then releasing the button.) It is easy to set

the scale to the maximum or minimum values by dragging the notch all the way to the

right or left of the scale.

35



If there are many possible scale values, then it may be difficult to drag the notch

to the desired setting. Incremental clicking may be more precise. The User positions the

mouse pointer on the bcale tu 'Le right or the ieft of the notch in the direction that you

want the notch to move. Each click, moves the notch a large and exact incremental

value. The User can also position the notch all the way to the left/right of the scale by

positioning the pointer to the left/right of the notch, pressing on the mouse button,

and holding the button down until the notch reaches the left/right end of the scale.

36



References

Goldman, S. R. & Saul, E. U. (1990). Flexibility in text processing: A strategy
competition model. Learning and Individual Differences, 2, 181-219.

Just, M.A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual
differences in working memory. Psychological Review, 99, 122-149.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A
construction-integration model. Psychological Review, 95, 163-182.

Turner, A. & Greene, E. (1978). The construction and use of a propositional text base.
JSAS Catalog of Selected Documents in Psychology, 8, 58.

37



Sample Propositional Parse for the First Sentence of the Distance Passage

Sentence: Distance is simply the space between two points.

Proposition Type of Proposition Activation
p0 simply(pl) modification 1
pl Is(p4,p5) verbal predicate 2
p2 isAbetween(p5,p6) modification 1
p3 quant(p6,2) modification 1
p4 distance concept 1
p5 space concept 1
p6 points concept 1

Table 1: Propositional representation of a sentence



Distance is simply the space between two points. Measured with a standard
unit such as the kilometer or mile, the result is called absolute distance and is what
most persons probably think of when they think of distance. However, there is also
something called relative distance, which is when absolute distance is influenced by
other factors.

There are a number of factors that affect distance measurement. Economic
distance is measured in relation to the cost of movement from one place to another.
There is a cost involved in any movement, in terms of either money or energy. The
cost of shipping something by water is usually about one-tenth the cost over land,
despite the fact that land routes are usually shorter.

Distance can be measured relative to time. Maps that use travel time instead of
mile markers as the units of measure distort the usual spatial relations among
locations. Travel time from a single point, such as the central business district, to a
location 10 miles north may be the same as travel time to a location 30 miles south.

Psychological distance is measured relative to our perceptions, which may vary.
What may seem like a long trip to some individuals may seem short to others. Even
the same route going and coming can seem different to a single traveler, depending
on road conditions, time of day, or anticipation of the end of the trip.

Distance can be measured relative to direction of movement. When 2 points
are located at different elevations, movement from point A to point B may not be as
easy as from B to A. The mileage between the puints may be equal but uphill
movement is harder than downhill.

Distances in geographic space can seem longer due to friction with obstacles.
For example, large crowds or heavy traffic are considered friction because they slow
down our movement. Often we are willing to travel farther in order to reduce
friction, such as when we go to a suburban mall rather than to a downtown store to
avoid traffic and crowds.

Table 2: Distance passage



STM activation of propositions after each cycle

Cycles
Sent. Prop. 1 2 3
1 1 2.3000 0.9459 0.4206
1 2 2.4000 0.7230 0.2650
1 3 1.2000 0.3615 0.1325
1 4 1.1000 0.5844 0.2882
1 5 1.2000 0.3615 0.1325
1 6 1.2000 0.3615 0.1325
2 20 0.0000 1.1363 0.4904
2 21 0.0000 0.8952 0.3281
2 22 0.0000 0.9230 0.3383
2 23 0.0000 0.8527 0.3125
2 24 0.0000 0.7590 0.4262
2 25 0.0000 0.5486 0.2010
2 26 0.0000 0.4573 0.1676
2 27 0.0000 0.4654 0.1706
2 28 0.0000 0.5234 0.3398
2 29 0.0000 1.0140 0.5196
2 30 0.0000 0.5491 0.2012
2 31 0.0000 1.2850 0.6189
2 32 0.0000 0.5765 0.2113
3 50 0.0000 0.0000 0.6357
3 51 0.0000 0.0000 1.1336
3 52 0.0000 0.0000 0.6998
3 53 0.0000 0.0000 0.7103
3 54 0.0000 0.0000 1.0019
3 55 0.0000 0.0000 0.6729
3 56 0.0000 0.0000 0.7580

Table 3: Report 1 Output



Active cycles and Re-instantiations

Sent Prop Active Re-inst Last act.
1 1 3 0 0.4206
1 2 3 0 0.2650
1 3 3 0 0.1325
1 4 3 0 0.2882
1 5 3 0 0.1325
1 6 3 0 0.1325
2 20 2 0 0.4904
2 21 2 0 0.3281
2 22 2 0 0.3383
2 23 2 0 0.3125
2 24 2 0 0.4262
2 25 2 0 0.2010
2 26 2 0 0.1676
2 27 2 0 0.1706
2 28 2 0 0.3398
2 29 2 0 0.5196
2 30 2 0 0.2012
2 31 2 0 0.6189
2 32 2 0 0.2113
3 50 1 0 0.6357
3 51 1 0 1.1336
3 52 1 0 0.6998
3 53 1 0 0.7103
3 54 1 0 1.0019
3 55 1 0 0.6729
3 56 1 0 0.7580

Table 4: Report 2 Output



LTM Strengths of propositions at end of processing

Prop. Self Link Total
Number Str. Str. Strength

1 3.6665 9.0430 12.7095
2 3.3880 5.6466 9.0346
3 1.6940 2.8233 4.5173
4 1.9725 6.2197 8.1922
5 1.6940 2.8233 4.5173
6 1.6940 2.8233 4.5173
20 1.6268 10.0343 11.6611
21 1.2232 4.3480 5.5712
22 1.2613 4.3480 5.6093
23 1.1652 2.1740 3.3392
24 1.1852 8.7813 9.9665
25 0.7496 3.2610 4.0106
26 0.6248 1.0870 1.7118
27 0.6360 1.0870 1.7230
28 0.8632 4.0160 4.8792
29 1.5337 5.1030 6.6367
30 0.7504 2.1740 2.9244
31 1.9039 8.7813 10.6852
32 0.7878 2.1740 2.9618
50 0.6357 1.6258 2.2615
51 1.1336 7.6403 8.7739
52 0.6998 2.1143 2.8141
53 0.7103 2.1143 2.8246
54 1.0019 5.5821 6.5840
55 0.6729 1.4096 2.0825
56 0.7580 2.3305 3.0886

Table 5: Report 3 output



LTM strengths of propositions and links

Sent. Proposition

I propI is

Self Strength: 3.6665

Link Strengths to:

prop2 1.4117
prop4 1.4117
prop5 1.4117
prop20 1.2957
prop24 1.2957
prop3l 1.2957
prop51 0.9210

Total Link Strength: 9.0430

Total Strength of proposition: 12.7095

prop2 isAbetween

Self Strength: 3.3880

Link Strengths to:

propI 1.4117
prop3 1.4117
prop5 1.4117
prop6 1.4117

Total Link Strength: 5.6466

Total Strength of proposition: 9.0346

Table 6: Report 4 output



STM activation of propositions and links at last cycle

Sent. Proposition

I prop I is

Self Activation: 0.4206

Link Activation to:

prop2 0.1104
prop4 0.1104
prop5 0.1104
prop20 0.3475
prop24 0.3475
prop31 0.3475
prop51 0.92 10

Total Link Activation: 2.2947

Total Activation of proposition: 2.7153

prop2 isAbetween

Self Activation: 0.2650

Link Activation to:

propI 0.1104
prop3 0.1104
prop5 0.1104
prop6 0.1104

Total Link Activation: 0.4416

Total Activation of proposition: 0.7066

Table 7: Report 5 output



Sentence Reading Behavior Summary

Sent. Read Skim Reread BackTo BackFrom

1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0
7 1 0 0 0 0
8 1 0 0 0 0
9 2 0 0 1 0
10 2 1 0 0 0
11 2 1 0 0 0
12 2 1 0 0 0
13 2 1 0 0 0
14 1 1 0 0 1
15 1 0 0 0 0
16 1 0 0 0 0
17 1 0 0 0 0
18 2 0 0 1 0
19 1 1 0 0 1

Table 8: Report 6 output



Input SentencePhase I Propositions

Phase II Construct Links
Within Sentence

fConstruct Links
Phase III Across Sentences

Compute Measures
of Text Coherence

Phase IV

Current Reading NOT OKAY

OKAY

READ
FORWARD

Figure 1: Phases ot The ReReader Simulation



Evaluate
Current Reading

Strategy

+ 0-
Read Mark Read

Forward Problem Back / Repair

Marked Problem Marked Problem
is not Active is Active

Read Back Skim Back to it;
Sequentially; Evaluate
Evaluate After
Each Sentence

"+ +orO
Read Skim to

Backward Sentence that
Initiated ReRead:

Read Forward

Figure 2: Selection of Reading Strategies



Passage File: tx~s
SI........... "............................... . .

Predicate File: [predicates.prd

_-Don' t save sentence data

-s"ý Save sentence data in the sentence trace file

Sentence Trace File: sentencedump.sen

,_,Don' t save memory data

'^ Save memory data in the memory trace file

Memory Trace File: jmemory dump.mem

.,,Use reading strategies

SFollow fixed path specified in Path file

Path File: jpath.pth

50 1

Act ivation Cap Hotivation

'Click here to change Constituent Acti-vations

:Click here to change Linkc Stra tegy Options

:Click here to change Coherence Criteria Options**

Click here for HELP Quit :Go on and Simulate

Figure 3: Main Window for ReReader Simulator



REREADER Report Selection

^:Proposition activation over all cycles (Excell format)

;, Active-cycles and re-instantiations (Excell format)

QkSumlary Long Term Memory Strengths (Excell format)

QDetailed Long Term Memory Strengths

vDetailed Short Term Memory Activations

SReading Behavior Summary (Excell format)

K> Reading Behavior Graph (Displayed)
--- ------------------------------------------------------------

Sentence Trace File: SEN1TENCEDUUP.SEN.. ..... .. ..... ... .. .. ... ........... .. ......... .
Memory Trace File: jMEMORY DUHP.MHEM

Report Output File: 1REPORTXX.XCL

.100

Threshold

0

Cycle (Use 0 for last cycle)

i.. ..................... I ........................... ., ............... i.... .... ... ..... . ..... . ....
Click here for HELP :Just quit :Go ahead and do report

Figure 4: Report Inter face Menu



READING- GRAPH

Sentence Reading Behavior Graph of file: samplegrapl !f

1
2
3
4
5
6
7
8
9
10 %
1 1 •
12
13 %
14 %
15
16
17
18
19-

5 10 15 20 25 30

Cycle LJ

Figure 5: Graphic Display of Report 6



1.00

Word

1.00

Exist

1.00

Modif ication

1.00
iiii~ ~ i•!• •!•i~ i• ..- .• .....• i •ii~i iiii •ii~i i..........................i• i~ i •

Relational Reference

2.00

Verbal Predicate

)Readuy. Go HackC ie eed Help::

Figure 6: Constituent Activations Menu



2 Argument Overlap

1.00

2Propositional Embedding

1.00.. .. ... ... . ..:- n....... ........................... :.........

3 Relational Reference

1.00
.. ............. . ..........

Activation Boost

.10

r--------------
'Ready. Go Back*: ~Need Helpi.

AAA .... .A .. .AA:........... .. .

Figure 7: Link Strategy Options



,T]First Sentence of Passage

SFirst Sentence of Paragraph

U Previous Sentence

_ Argument Links Present

jArgumient Links Missing

FReadigrG--:• Bacniteieed Helpt

FFig-ure 8: Coherence Crite~ria O-p-tio-ns ---


